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INTRODUCTION

The increasing availability of light-weight 
and high-strength structural materials, in combi-
nation with advanced manufacturing techniques, 
has led to the conception of ever more enterpris-
ing and slender structures in modern aerospace, 
mechanical, and civil engineering applications 
[1–3]. As a matter of fact, the design of such ad-
vanced structures cannot be undertaken without 
resorting to numerical methods for structural 
analysis [4].

When a structural element undergoes dis-
placements and deformations that overcome the 
limits acceptable for the validity of infinitesimal 
theory of elasticity, a nonlinear analysis must 
be conducted to accurately predict its mechani-
cal behaviour [5–7]. In the finite element method 
(FEM), the nonlinear static equilibrium equations 
for a discretised, elastic mechanical system are 
generally stated in the following matrix form:
  ( ) - =K u u p 0,  (1)

where: K – the secant elastic stiffness matrix of 
the system, depending on the nodal dis-
placement vector u, and 

 p – the nodal load vector [8].

Equations (1) can also be written as:
  ( ) =f u p, (2)

where:   ( ) ( )=f u K u u  (3)
is the nodal elastic force vector. Equations (2) 
highlight the fact that static equilibrium is a bal-
ance between the internal and external forces. 
Furthermore, from Equations (3), it follows that 
given two vectors f and u, no unique definition 
of the secant stiffness matrix exists. Indeed, K(u) 
can be expressed as either a symmetric or an 
asymmetric matrix. It is clear that having a sym-
metric matrix is desirable to reduce the use of 
computer memory and to improve the computa-
tional effectiveness of solution algorithms.

In linear analysis, i.e., for small strains and 
displacements, the stiffness matrix K is evalu-
ated in the reference configuration of the system 
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independently of the nodal displacements. In this 
case, the stiff ness matrix is always a symmetric 
matrix. Instead, in geometrically nonlinear anal-
ysis, i.e., when strains and displacements may 
attain large values, K must be evaluated in the 
current confi guration and depends on the nodal 
displacements. In the literature, several strate-
gies have been proposed for the evaluation of the 
secant stiff ness matrix [9, 10]. Most approaches 
lead to express K as an asymmetric matrix, which 
then can be made symmetric by suitable manipu-
lations [11]. Also, it should be noted that most ap-
proaches of the literature are based on complicat-
ed numerical calculations or analytical formulae.

The paper illustrates a straightforward meth-
od for the derivation of symmetric secant stiff ness 
matrices for systems made of hyper-elastic mate-
rials characterised by both geometric and material 
nonlinearities. The method is based on the adop-
tion of the nodal coordinate vector in the current 
confi guration x, instead of the nodal displacement 
vector u, as the main unknown. As a result, the 
nodal internal force vector is expressed as:

 ( ) ( )=f x S x x,  (4)
where: S – a symmetric secant stiff ness matrix 

depending on the nodal coordinate vector.

The proposed approach turns out to be simi-
lar to the absolute nodal coordinate formulation 
(ANCF) used for fl exible multibody dynamics 
[12], here adapted to the context of computational 
solid and structural mechanics. In what follows, 
fi rst the method is presented for general isopara-
metric fi nite elements with translational degrees 
of freedom. Then, specialised expressions are 
deduced for the truss bar element. Lastly, the 
eff ectiveness of the method is illustrated by the 
analysis of some well-known planar and spatial 
truss structures.

ANALYTICAL DERIVATION OF 
STIFFNESS MATRICES

Finite element formulation

Let us consider the nonlinear static equilib-
rium problem for a continuous body made of a 
hyper-elastic material and occupying a region Ω 
of the Euclidean space of dimension d. In the fi -
nite element formulation (Figure 1), the region 
Ω is approximated by the union of m regions, 

 1 2, , , mW W W! , corresponding to the fi nite 

elements. Elements are connected to each other 
and to the support only at a discrete number n
of points called nodes. Also, the distributed sur-
face and body forces, as well as the kinematic re-
straints, of the continuous model are substituted 
by their equivalent, concentrated nodal loads and 
restraints [8].

Let us fi x a Cartesian reference system 
 1 dOx x! . Thus, physical vectors can be repre-

sented in terms of their real-valued components 
as column vectors of  dR  (here and in the follow-
ing, 

 

R  denotes the set of real numbers). Besides, 
let us choose a reference confi guration 

 

W as one 
of the many confi gurations that the body can oc-
cupy. Let  PÎW be the point corresponding to a 
given material particle in the reference confi gura-
tion and 

 

PÎW  the point corresponding to the 
same particle in the current confi guration. We de-
note with  P P O= -x  and  P P O= -x  the position 
vectors of the two points. Besides,

 P P PP P= - = -u x x  (5)
denotes the displacement vector of the considered 
particle.

The displacement vector fi eld defi ned over the 
reference confi guration represents the main un-
known of the continuous problem. In the standard 
fi nite element formulation, the displacement fi eld 
within each element is approximated by a suitable 
interpolation of the displacement vectors of the 
nodes connected to the element. In particular, for 
an isoparametric element with only translational 
degrees of freedom, the displacement vector fi eld 
can be represented as:

 ( )P e P e@u N x u ,  (6)

Figure 1. Finite element model of 
a continuous elastic body
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where: e – the element label, 
  ( ) ed n d

e P
´ÎN x R  – the shape function 

matrix of the element and 
  1 2

[ ; ; ; ] e

e e e ne

n d
e J J J= Îu u u u! R  – the 

nodal displacement vector of the element. 
Here,  1 2, , ,

ee e e nJ J J!  – the labels of the 
nodes of the element and 

 

en  is their total 
number.

The nodal displacement vector of the element 
can also be expressed as follows:
  e e=u A u, (7)
where:  

en d nd
e

´ÎA R  and  1 2[ ; ; ; ] nd
n= Îu u u u! R  

respectively are the assembly matrix of the ele-
ment and the displacement vector of the system. 
The assembly matrix  eA  has all null entries, ex-
cept for the macro-rows and macro-columns cor-
responding to the element nodes, where identity 
matrices  d d´ÎI R  are placed. The displacement 
vector u collects the displacement components 
of all of the nodes of the model and constitutes 
the main unknown of the discretised problem. It 
should be noted that while the assembly matrix is 
useful for the analytical formulation, in numerical 
implementation it is more computationally effec-
tive to code the assembly process via direct ex-
traction of the sub-vectors and sub-matrices cor-
responding to the involved nodes [13].

For what follows, it is also useful to in-
troduce the nodal position vectors of the ele-
ment 

 1 2
[ ; ; ; ] e

e e e ne

n d
e J J J e= = Îx x x x A x! R  and 

 1 2
[ ; ; ; ] e

e e e ne

n d
e J J J e= = Îx x x x A x! R  in the 

reference and current configurations, respec-
tively. In line with the notation used for the 
displacements,  1 2[ ; ; ; ] nd

n= Îx x x x! R  and 
 1 2[ ; ; ; ] nd

n= Îx x x x! R  respectively are the nodal 
position vectors of the system in the reference and 
current configurations.

Green-Lagrange strain measure

In the presence of large strains and displace-
ments, the deformation can be conveniently mea-
sured by using the Green-Lagrange strain tensor 
[14]. For an element with dimension 

 

ed , the Car-
tesian components of the strain tensor turn out 
to be:

 
 

T T
1
2

P P P PE
s s s sab
a b a b

é ùæ ö æ ö¶ ¶ ¶ ¶
ê ú= -ç ÷ ç ÷¶ ¶ ¶ ¶ê úè ø è øë û

x x x x
,  (8)

where: 
 

sa  and 
 

sb  are local coordinates for the 
element with the indices α and β ranging 

from 1 to 
 

ed . By introducing Equations 
(5) and (6) into (8), after some manipula-
tions, the expression for the strain compo-
nents can be put in the following form:

 
 

T1 ( ) ( )
2 e e e eEab ab= + -x x Γ x x ,  (9)

where: the symmetric matrices

 

TT
1
2

e en d n de e e e

s s s sab
a b b a

´
é ùæ öæ ö¶ ¶ ¶ ¶ê ú= + Îç ÷ç ÷ ç ÷¶ ¶ ¶ ¶ê úè ø è øë û

N N N NΓ R

have been introduced. For what follows, it will 
be useful to calculate the derivative of the strains:

 
 
e

e

Eab
ab

¶
=

¶
Γ x

x
.  (11)

Nonlinear static equilibrium equations

The nonlinear static equilibrium equations 
can be deduced by imposing the stationarity of 
the total potential energy of the system [15]:
 

 

= -V U W , (12)
where: 

 

U  is the strain energy stored in the whole 
system and 

 
 

W  is the virtual work done by the loads. 
Such contributions can be calculated as 
explained in the following.

The mechanical response of hyper-elastic 
materials is characterised by the definition of a 
potential function  ( )Eabj j= , from which the 
stress-strain relationships are derived. In particu-
lar, the work-conjugate stress measure for the 
Green-Lagrange strain tensor is the second Piola-
Kirchhoff stress tensor [14], whose components 
turn out to be

 
 

S
Eab
ab

j¶
¶

= . (13)

Besides, 
 

j  can be interpreted as the strain-
energy density, i.e. the strain energy stored in a 
unit volume in the reference configuration. Thus, 
the strain energy stored in an element e is:

  
d

e
e Vj

W
= òU  (14)

and the strain energy of the whole system is given 
by:

 
 1

m

e
e=

=åU U . (15)

Besides, it is assumed that the load vector can 
be expressed as:
  l=p p (16)

(10)
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where λ is a scalar load multiplier and 
 

p  is a ref-
erence nodal load vector. As a consequence, the 
virtual work of the loads turns to be:
  

T T ( )l= = -p u p x xW . (17)

By differentiating Equation 12, the nonlinear 
equilibrium equations are obtained:

 
 

( ) ( )¶ ¶ ¶
= = - = - =
¶ ¶ ¶

g x f x p 0
x x x
V U W

,  (18)

where, by recalling also Equations (14)–(17), the 
nodal elastic force vector is:

 1 1
( ) d

e

m m

e
e e

Vj
W

= =

¶ ¶ ¶
= = =
¶ ¶ ¶å åòf x
x x x
U U

  (19)
and the nodal load vector is:

 
 

l¶
= =
¶

p p
x
W

.  (20)

Symmetric secant elastic stiffness matrices

By applying the chain rule for differentiation 
and recalling Equation (7), from Equation (19), 
the nodal elastic force vector is obtained:

 

T

1 1 1 1
( ) d ( )

e e

e

d dm m

e e e
e e

E
E

Vb

a

a

ab b

j
W

= = = =

¶ ¶
= =

¶ ¶å åå åòf x A f x
x

,

where:

 1 1
( ) d

e e

e

d d

e e
e

E
V

Eaa

a

bb

b j
W

= =

¶ ¶
=

¶ ¶ååòf x
x   (22)

is the nodal elastic force vector of element e. 

By substituting Equation (13) into (22) and 
recalling Equation (11), the nodal elastic force 
vector for the element can be expressed as:
  ( ) ( )e e e e e=f x x xS ,  (23)
where:

 1 1
( ) d

e e
e e

e

d d
n d n d

e e VS
a

ab ab
b

´

W
= =

= Îååò ΓS x R   (24)

is the symmetric secant elastic stiffness matrix of 
the element, expressed as a function of the nodal 
position vector. By substituting Equations (23) 
into (21) and recalling Equation (11), the nodal 
elastic force vector for the whole system is ob-
tained as:
  ( ) ( )= xf x S x ,  (25)
where:

 
 

T

1
( ) ( )

m
nd nd

e e e e
e

´

=

= ÎåS x A S x A R   (26)

is the symmetric secant elastic stiffness matrix of 
the system, expressed as a function of the nodal 
position vector. By substituting Equations (20) 
and (25) into (18), the nonlinear equilibrium 

equations are finally obtained in the following 
form:
  ( ) ( ) l= - =g x S x x p 0,  (27)
where the main unknown is the nodal position 
vector x, instead of the displacement vector u.

The implementation of incremental-iterative 
solution methods also requires the introduction of 
the tangent stiffness matrix of the system, which 
can be calculated as follows:

 
T

1

[ ( ) ]( ) ( )
m

nd nd
e e e e

e

´

=

¶ ¶
= = = Î
¶ ¶ åf S x xT x A T x A
x x

R ,

where

 

2
T

1 1 1 1
( ) ( ) d

e e e e
e e

e

d d d d
n d n d

e e e e e eE
V

Eg d ab
ab gd

b gda

j
= =

´

W
= =

¶
= + Î

¶ ¶å åååòT Γ Γx S x x x R 

 

2
T

1 1 1 1
( ) ( ) d

e e e e
e e

e

d d d d
n d n d

e e e e e eE
V

Eg d ab
ab gd

b gda

j
= =

´

W
= =

¶
= + Î

¶ ¶å åååòT Γ Γx S x x x R

is the tangent stiffness matrix of element e.

In closure, it is noted that the volume inte-
grals appearing in Equations (24) and (29) can be 
carried out numerically, if necessary [8].

Explicit expressions for the truss bar element

The general expressions of the secant stiff-
ness matrices are now specialised to an isopara-
metric truss bar element. The formulation will be 
valid for both planar (d = 2) and spatial (d = 3) 
structures.

Let us consider a truss bar element labelled e 
with  2en =  nodes  1eJ  and  2eJ . Let 

 

eA  and 
 

eL  re-
spectively denote the truss bar cross-section area 
and length in the element reference configuration 

 eW . The element has dimension  1ed =  and a local 
coordinate  1 [0, ]es LÎ  is fixed along the bar cen-
treline (Figure 2).

The displacement field is assumed to be de-
scribed by linear shape functions:

 
 

1
1 1( ) 1e

e

sN s
L

= -  and 
 

1
2 1( )e

e

sN s
L

= .  (30)

and the shape function matrix is defined as 
follows:
  [ ]1 1 1 2 1( ) ( ) ( )e e es N s N s=N I I ,  (31)
where:  d d´ÎI R  is the identity matrix. The deriva-
tive of the shape function matrix turns out to be:

 
 

[ ]
1

1e

es L
¶

= -
¶
N I I .  (32)

Thus, the matrix defined in Equation (10) can 
be easily calculated (since the element is 1-di-
mensional, indices  1a b= = ):

 
 

11 2

1

eL
=Γ Δ, (33)

(21)

(28)

(29)
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where the following constant matrix is introdu-
ced:

 

2 2d d´-é ù
= Îê ú-ë û

I I
Δ

I I
R .  (34)

The axial strain in the truss bar can be calcu-
lated from Equation (9):

 

T
11 2

1 1 ( ) ( )
2 e e e e

e

E
L

= + -x x Δ x x .  (35)

In passing, it is noted that the axial strain, 
as well as the corresponding stress  11S , turns out 
to be constant because of the linearity of the as-
sumed shape functions. This result simplifi es the 
integration over the volume of the element and 
avoids the use of numerical integration proce-
dures. In particular, by substituting Equation (33) 
into (24) and performing the integration over the 
reference volume of the element  e e eV A L= , the el-
ement secant stiff ness matrix is obtained:

 1
1

1

1

1

1
( ) d

e

e
e e

e

AS S
L

V
a

ab ab
b

W
= =

= =ååò Γ ΔS x . (36)

Furthermore, Equation (29) for the element 
tangent stiff ness matrix specialises to:

 
11

1

T
3

1

( ) ( ) e
e e e e e

e
e

AS
E L
¶

= +
¶

Δ ΔT x S x x x .  (37)

It is worth noting that Equations (36) and (37) 
are valid not only for linearly elastic materials, 
but also for any type of nonlinear hyper-elastic 
material [14].

NUMERICAL EXAMPLES

Material laws

For the sake of illustration, two ideal materi-
als are considered for the truss bars [14]:
1) a linearly elastic material, for which the strain-

energy density is:

 
2

11 11
1( )
2

E EEj = ,  (38)

where: E is the Young’s modulus;

2) an incompressible neo-Hookean material, for 
which the strain-energy density is:

 
( )2 1

11 1 1
1( ) 2 3
2

Ej µ l l-= + - ,  (39)

where:  / 3Eµ =  is the shear modulus and 

 1 112 1El = +  is the stretch in the bar 
axial direction.

In the two cases, Equation (13) for the second 
Piola-Kirchhoff  stress specialises as follows:

 11 11S EE=  with 
 

11

11

S E
E
¶

=
¶

 (40)
and

 
( )311 1

1 1
3

S E l-= -  with 
 

511
1

11

S E
E

l-¶
=

¶
,  (41)

respectively.

Figure 3 shows a plot of the axial force 
 1 11 eF S Al=  vs. the relative elongation 

 ( )1 1/ 1e e eL L Le l= - = -  of a truss bar, according 
to the two considered material laws.

Von Mises’ truss

As a fi rst example, the planar von Mises’ 
truss shown in Figure 4 is analysed. Despite its 
simplicity, this structure can exhibit a wide range 
of instability phenomena [16]. Therefore, thanks 
to the availability of analytical solutions, it has 
been widely used for the validation of numerical 

Figure 2. Truss bar element

Figure 3. Axial-force vs. relative elongation
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solution algorithms [19]. Recently, Fonseca and 
Gonçalves [20] have presented an analytical solu-
tion for the von Mises’ truss with bars made of 
nonlinear hyper-elastic materials.

The following numerical values 
are used in this example: 

 

250 mmb = , 
 

200 GPaE = ,  
2100 mmeA = ,  1 1( ) 200 kN=p ; two 

values are considered for the height: 
 

100 mmh =
and 

 

500 mmh = , respectively corresponding to 
a shallow truss and a deep truss. The equilibrium 
paths, i.e. the curves representing the equilibrium 
confi gurations in the load-displacement space, 
have been obtained by using the arc-length meth-
od [17, 18] with the admissible direction cone 
constraint proposed by Ligarò and Valvo [19].

Figure 5 shows the paths obtained for the 
shallow and deep trusses with both linearly elas-
tic and neo-Hookean materials. For the shallow 
truss, the overall structural response changes only 
marginally because of the diff erent material laws 
adopted. Instead, for the deep truss, remarkable 
diff erences in the structural response are observed 

due to the diff erent material laws. For the deep 
truss, it is known that also bifurcation points and 
a secondary branch are present on the equilibrium 
path [16, 19, 20]. However, their detection and 
tracing are not described here, as not being re-
lated to the main scope of the present work.

Star-shaped dome

As a second example, the star-shaped dome 
shown in Figure 6 is considered. This three-di-
mensional structure has been investigated fi rst by 
Abatan and Holzer [21] and later used by many 
Authors as a benchmark test.

The following numerical values are 
assumed:  1 250 mmr = ,  2 500 mmr = , 

 1 20 mmh = ,  2 82.16 mmh = , 
 

200 GPaE = , 
 

2100 mmeA = ,  1 3( ) 20 kN=p . As for the previous 
example, the equilibrium path has been obtained 
by using the method  by Ligarò and Valvo [19].

Figure 7 shows the equilibrium path of the 
dome traced by assuming linearly elastic and 

Figure 5. Equilibrium paths of a) shallow and b) deep von Mises’ trusses

Figure 4. Von Mises’ truss: reference confi guration
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neo-Hookean material laws. For this structure, 
the overall response changes only marginally 
because of the diff erent material laws adopted. 
Anyway, the eff ectiveness of the proposed formu-
lation is demonstrated. Also, it should be noted 
that the complete equilibrium path of this struc-
ture features some bifurcation points and second-
ary branches [19]. However, their detection and 
tracing are omitted here, as not being related to 

the main scope of the present work. The equilib-
rium path of the dome is a curve in a 22-dimen-
sional space (1 load multiplier + 21 displacement 
components of the free nodes). Figures 7a and 
7b show projections of such curve onto two se-
lected planes. The apparent self-intersections of 
the path in Figure 7a do not correspond to bifur-
cation points. In fact, the same curve projected 
onto a diff erent plane appears as a simple curve 
(Figure 7b). Lastly, it is noted that one value of 
vertical displacement of the central node 1 may 
occur at several values of the load multiplier (Fig-
ure 7a), because these correspond in fact to diff er-
ent deformed confi gurations of the structure.

CONCLUSIONS

General analytic expressions have been de-
duced for the secant and tangent stiff ness ma-
trices of isoparametric fi nite elements made of 
hyper-elastic materials. Such symmetric matri-
ces are useful for the fi nite element analysis of 
elasticity problems characterised by both geo-
metric and material nonlinearities. Specialised 
expressions of the stiff ness matrices have been 
presented for the truss bar element. Then, the ef-
fectiveness of the proposed formulation has been 
demonstrated for the nonlinear static analysis of 
some well-known examples of planar and spatial 
truss structures.

The same formulation for the stiff ness matri-
ces can be usefully exploited also for nonlinear 
dynamic analysis. As a fi rst application, the dy-
namic deployment of a cable net has been recent-
ly investigated [22].

Figure 6. Star-sh    aped dome: a) plan view and 
b) side view in the reference confi guration

Figure 7. Equilibrium path of the star-shaped dome: a) load multiplier vs. node 1 vertical 
displacement and b) node 2 vertical displacement vs. node 1 vertical displacement
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Specialisation to more general isoparametric 
elements for the analysis of two- and three-dimen-
sional elasticity problems, as well as the exten-
sion to elements with rotational degrees of free-
dom, will be the subject of future developments.
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